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Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

ReceiVed: February 11, 1998; In Final Form: April 9, 1998

A simple and realistic model of an excitable chemical system in which running impulses can be observed is
studied. Mesoscopic characteristics of the model are obtained by numerical simulations of the master equation
for spatially extended system. Velocity of the impulse and its shape obtained in the simulations agree well
with the phenonenological description. For small diffusion coefficients, fluctuations grow locally and create
impulses of excitations. Formation of such impulses cannot be described by the phenomenological approach.
However, if an excitation is sufficiently developed, its subsequent evolution can be predicted with reasonable
accuracy by phenomenological equations.

I. Introduction

In an excitable regime, a nonlinear dynamical system has only
one attractor and all trajectories attend it asymptotically. In
the simplest case the attractor is a stable stationary state.
However, not all trajectories are directly attracted to this state.
Trajectories beginning at some distance from the stable station-
ary state initially go away from it and only later on are they
attracted back to it, whereas trajectories initialized sufficiently
close to the stable stationary state are directly attracted to it.
Such properties can exhibit only nonlinear dynamical systems
whose behavior is governed by two or more variables. Usually,
the excitable systems are close to either the Hopf bifurcation
in which they switch to an oscillatory regime or to a saddle-
node bifurcation in which bistability appears. There are known
many chemical systems that exhibit excitability.1 They can be
excitable only in far-from-equilibrium conditions. The best
known example of excitable systems is the Belousov-Zhabo-
tinsky (B-Z) reaction. Perturbations of the stable stationary
state with high concentration of the reduced catalyst by additions
of small amounts of a silver ion solution can generate a rapid
increase (pulse) of concentration of the oxidized form of the
catalyst after which the system returns to the stationary state.
In spatially extended systems, such local perturbations can lead
to generation of the single impulse of concentrations spreading
with a constant velocity.2-7 If ferroin is used as the catalyst in
the B-Z reaction the running impulse is seen as the blue zone
spreading through the red solution.

The dynamics of excitable systems can be sensitive to internal
fluctuations. Small fluctuations around a stable stationary state
are damped, but sufficiently large fluctuations can induce large
deviations of concentrations from the stationary state. One can
expect an important difference in the influence of fluctuations
on the behavior of stirred and unstirred excitable chemical
systems. An ideally stirred excitable system may be treated as
homogeneous. If a size of a system is small, homogeneity can
also be maintained by sufficiently fast diffusion. In an unstirred
spatially extended excitable system, diffusion is not always able
to disperse local fluctuations of concentrations. In this case
local fluctuations can increase and form domains in which
concentrations rapidly go away from the stable stationary state.
These domains can grow to impulses of excitations that next
expand owing to the traveling wave mechanism and cover a

substantial part of the system. We study these phenomena in
the present paper using phenomenological and stochastic
descriptions. In order to include local fluctuations in the
description of dynamics of an excitable system we use the
master equation (ME) approach,8-10 which accounts for sto-
chastic character of chemical and diffusion processes. Spatially
extended inhomogeneous as well as homogeneous systems at
the initial instance will be considered. We extend here our
previous investigations on the influence of global fluctuations
on the behavior of the homogeneous (ideally stirred) excitable
system.11 In particular, we are concerned with the influence of
diffusion on the dynamics of local fluctuations.

We want to stress that at present it is not possible to study
effectively any real chemical system exhibiting excitable
dynamics (like the B-Z reaction) by the master equation
approach. Therefore, one must consider models as simple as
possible, which can be efficiently simulated using numerical
methods. Recently, we have constructed the simple but realistic
chemical model that exhibits excitability11 as well as oscillatory
behavior12 in homogeneous systems. In these cases only global
fluctuations were taken into account. The model consists of
bimolecular reactions excluding autocatalysis, and therefore it
can be easily simulated by ME method as well as by molecular
dynamics technique for reactive hard spheres.13 We consider
here the same chemical scheme as in the previous papers,11,12

but now we include local fluctuations by considering a spatially
extended system in which inhomogeneities can appear. We
examine the relation between the stochastic and deterministic
descriptions by comparing the results of the master equation
approach with the solutions of the corresponding reaction-
diffusion equations. For spatially extended systems, the ME
approach has been already applied to study effects of fluctuations
in models of bistable systems8-10,14,15 and the model with
chemical kinetics described by the quadratic autocatalytic term.16

These models have been also studied by the Langevin approach,
which is based on introduction of noise terms to corresponding
phenomenological equations.17 Many important results con-
cerning stochastic effects in the dynamics of explosive systems
has been proved by Zel’divich and co-workers,18 but these
results have not been obtained from the ME approach. To our
best knowledge there are no papers using the ME approach to
excitable spatially extended chemical systems.
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The paper is organized as follows: In section II the chemical
scheme is described, and next a phenomenological dynamics
based on reaction-diffusion equations is analyzed. In section
III the master equation and the algorithm for its simulations
are presented. In section IV the results are presented and
discussed. Section V contains conclusions.

II. Phenomenological Model

The model consists of nine elementary (bimolecular) pro-
cesses:

The reactant V is transformed to the product U with E as the
catalyst (steps 2 and 3). This part of the scheme is the
modification of the well-known Langmuir-Hinshelwood mech-
anism of catalytic reactions (or the Michaelis-Menten kinetics
for enzymatic reactions). Step 4 describes the inhibition of the
Langmuir-Hinshelwood mechanism (or the Michaelis-Menten
scheme) by an excess of the reactant V. Moreover, the reactant
V is transformed directly to the product U in the step 5. The
system is open, owing to step 1, in which the reactant V is
produced from the reagent R, whose concentration is maintained
constant. It is assumed that S is a solvent whose concentration
is also kept constant. One can arrange such conditions in a
continuously fed unstirred reactor (CFUR) or a so-called “gel
disc reactor”. Because we are interested in inhomogenous
systems, we allow for initial distributions of reagent concentra-
tions that depend on spatial coordinates. Therefore, local mass
balance equations with reaction and diffusion terms for each
reagent separately must be used to describe the dynamics of
the system. According to the mass action law, the behavior of
the system is described by five reaction-diffusion equations
for V, U, E, X, and Y. For simplicity we restrict our
considerations to one-dimensional systems. The kinetic equa-
tions have the form

where the italicized symbols of the reagents are used to denote
their concentrations for convenience, because this notation does
not cause any misunderstandings.

In the sequel we will assume that diffusion coefficients of
all reagents are identical and equal toD. Moreover, initial
distributions of a total concentration of the catalyst or the
enzyme (E(x, 0) + X(x, 0) + Y(x, 0)) are constant in space. In
this case the sumE(x, t) + X(x, t) + Y(x, t) ) E0 remains
constant for timet > 0, and therefore, one of the variables (say
Y(x, t)) can be eliminated. Thus, the dynamics of the system
can be described by four reaction-diffusion equations only:

In order to argue on possibility of running impulse solution
to these equations, let us consider the case of the homogeneous
system. In the previous papers11,12 we have shown that the
corresponding kinetic equations (without the diffusion terms)
have only one stationary state given by

whereKi ) k-i/ki for i ) 1, 4, and 5. For appropriate choice
of the rate constants and the concentrations ofS, R, andE0 the
stationary state is attracting. ME simulations can be performed
in the efficient way if the rate constants are not very different,
which means that all reactions occur at similar time scale. Also
values of the diffusion coefficients have to be chosen in such a
way that spreading of running impulses can be detected in
reasonable intervals of time and size of the system. For the
same reason, ratios of the concentrations of all reagents should
not differ by many orders of magnitude. In particular, in
simulations described below we have usedS ) 0.1, R ) 0.2,
E0 ) 0.2 andk1 ) 0.01,k-1 ) 0.012,k2 ) 8.0, k-2 ) 0.1, k3

) 3.9, k4 ) 1.0, k-4 ) 4.0, k5 ) 0.1, k-5 ) 0.1. Two values
of the diffusion coefficients are selected:D ) 2 ×10-4 andD
) 10-3.

For the chosen values of the parameters the concentrations
at the stationary state are equal to
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and the characteristic equation has two negative and two
complex eigenvalues equal to

The homogeneous system exhibits excitability11 for the above
values of the rate constants and concentrations ofS, R, andE0.
We have verified by numerical calculations for finite in space
systems with zero-flux boundary conditions that eqs 11-14 have
solutions of a type of running impulse for properly chosen initial
conditions.

To our best knowleadge there are no theorems that allow for
direct predictions of existence of asymptoptic solutions of a set
of reaction-diffusion equations in the form of the running
impulses. Usually this form of asymptotic solutions is assumed
in advance and next is verified in numerical calculations.
Excitability itself is not sufficient to get the running impulse.
Even if a system is locally excited, the pulse of excitation can
decay because a back of it can move faster than its front. In
order to shed light on the problem one can use arguments based
on the Kanel theorem,19,20 which determines the existence of
the running front solutions for one-variable reaction-diffusion
equation for an infinite system. We will shortly explain below
how this theorem can be used to argue that the running impulse
type solutions can be expected for a set of coupled equations
consisting of two reaction-diffusion equations (say, for vari-
ablesR andâ ). Our approach is based on the assumption that
R is a fast variable as compared withâ. The similar assumption
was used previously in construction of models for stationary
periodical structures,21 trains of impulses,22,23 and standing
waves24 in chemical systems. Let us assume that for homoge-
neous conditions the equation forR has a N-shaped nullcline
on the phase planeR × â. Assume next that a nullcline forâ
intersects the N-shaped nullcline at a left attracting branch, in
such way that the system is excitable (see Figure 1). For
sufficiently large initial local excitation ofR one can argue that
in fast time scale the variableâ remains equal to its initial
stationary value and a front ofR will be formed and next spread
with constant velocity according to the Kanel theorem. In the
region left behind by the traveling front ofR the distribution of
â changes in slow time scale, and there the distribution ofR as
the fast variable is determined by the right attracting branch of
the N-shaped nullcline. In this way a plateau of the distribution
of R is formed because the front ofR spreads over the slow
time scale. At some instance, in the region of initial excitation
the variableâ reaches a minimal value allowed on the right
attracting branch of the N-shaped nullcline, and at this moment
one must return to the fast time scale in which the distribution
of R joining right and left attracting branches of the N-shaped
nullcline is formed. In this way a “back” of the impulse begin
to form. Thenâ increases a little and eventually reaches a value
at which a velocity of just formed “back” of the impulse
becomes equal to the velocity of the running front formed
previously. The impulse ofR formed in the above way runs
away from the region of the initial excitation, and if the
velocities of the front and the back remain equal to each other
then the running impulse spreads with constant velocity. In
this case asymptotic solutions of the initial value problem for
R andâ have the formR(t, x) ) R(ê) andâ(t, x) ) â(ê), where
ê ) x ( ct andc denotes the velocity of the running impulse.

For our model it is easy to check that if one assumes that the
total concentration of catalyst (or the enzyme)E0 is much
smaller than the concentrations ofV and U, then one can
eliminate the variablesE andX using the Tikhonov theorem,25

and in this way one obtains the two-variable system with the
N-shaped nullcline forV on theV × U plane. The nullcline
for U intersects the N-shape nullcline in a point at which the
system is excitable, and one obtains the model discussed above.
Therefore, one can hope that for proper values of the parameters
the solutions of our model will have the properties discussed
above, namely, that the asymptotic solution of the corresponding
initial value problem will have the form of running impulse for
all four variables. These considerations have been verified by
numerical calculations in which the initial value problem was
replaced by the initial-boundary value problem with zero-flux
boundary conditions. Solutions to this last problem are very
good approximations of the initial value problem provided that
the formed impulse is far from the boundaries of the system.

III. Master Equation

The mesoscopic treatment of a spatially extended (in one
dimension) chemical system is an extension of this approach
applied to the corresponding uniform system.11 The system is
divided into (let’s say)M cells along the spatial coordinate; the
volume Ω and the length∆l of each cell are identical. The
state of our system is described by the probability distribution
P({NV,i, NU,i, NE,i,NX,i, NY,i}, t) of finding a set of populations
NQ,i of speciesQ ) V, U, E, X, Y in a cell i ) 1, ..., M. (A
number of moleculesR andS in each cell is assumed constant,
equal toNR ) R‚Ω andNS ) S‚Ω.) A number of molecules
NV,i, NU,i, NE,i, NX,i, NY,i in ith cell can be changed either by a
chemical reaction between molecules within a cell or by a
transfer of a molecule to or from adjacent cells. Both these
processes independently contribute to the time evolution of the
distribution function in the spatially extended system, and the
master equation (ME) forP can be schematically written in the
form

The contribution due to the chemical processes describes
reactions that can involve only molecules in a single cell,
provided that populations in other cells remain unchanged. It
is a straightforward extension of the corresponding term in the

Vs ) 0.166 66,Us ) 4.710 35,Es ) 0.034 95,
Xs ) 0.116 50

λ1 ) 1.963 16,λ2 ) -0.753 50,λ3 ) -0.005 73+
0.006 44i, λ4 ) -0.005 73- 0.006 44i

Figure 1. Schematic picture for the N-shaped nullcline forR and the
nullcline for â (the dashed line).

∂

∂t
P({NV,i, NU,i, NE,i, NX,i, NY,i}, t) ) ∂P

∂t |chem
+ ∂P

∂t |diff
(19)
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master equation for the uniform system11

The notation (...,NQ,j, ...) means that exceptNQ,j all populations
in the distribution functionP remain unchanged. The positive
components of the right-hand side of eq 20 describe creation
of a given state, resulting from transitions from other states.
The coefficientνchem provides the rate of escape from the
configuration{NV,i, NU,i, NE,i, NX,i, NY,i} as a result of any of
chemical processes 1-5. Thus, it is given by the sum of the
rates of all these chemical reactions:

The coefficientsκi are related to the rate constantski of reactions
1-5 by κi ) ki/Ω. This relation ensures that the kinetic terms
in eqs 6-10 can be recovered from eq 20 in the limitΩ f ∞,
as the relations for the average concentrations〈NQ/Ω〉.

It is assumed that every particle can jump with certain
probability to a neighbor cell. These hoping rates are related
to the diffusion coefficients and in general can be different for
each species. The term of eq 19 describing diffusion has then
the following form:

In this equation, the terms for boundary cells,j ) 1 andM, are

determined by boundary conditions. For impermeable walls,
what is the case considered here, transitions of molecules outside
the system are forbidden. The coefficientνdiff , describing the
total rate of diffusive jumps for all cells, can be written as:

The relation between the transition ratesdQ and the diffusion
coefficientsDQ follows from the condition that the diffusion
flux of the componentQ, -A‚DQ∆nQ/∆l (whereA is a surface
of a cross section of a cell), is obtained from the average value
of the net transition rate ofQ between adjacent cells. This yields
the relationdQ ) DQ/(∆l)2, which shows that for a given value
of the macroscopic diffusion coefficient the hoping ratesdQ

increase for finer divisions.
The master equation gives the description of the stochastic

system in terms of the probability distribution function. From
equivalent point of view, the stochastic dynamics can be
considered as a random walk of an individual system. In the
case of our system, it is the random motion in a discrete space,
where coordinates of each point correspond to a specific
configuration of populations{NQ,i} in cells. We have performed
simulations of this (continous time) random walk applying the
method of Gillespie26 to generate a stochastic trajectory. Let
us assume that the system at an instantt is in a state which is
given by the point{NV,j, NU,j, NE,j, NX,j, NY,j}. The total rate of
escape of the system from this point due to any reaction or
diffusion process is equal toν ) νchem + νdiff . According to
this, in the first step of the algorithm, a waiting timeτ for the
transition is sampled from the exponential distribution with the
mean ν-1. The next step consists of choosing a particular
reaction or diffusion process, which causes a transfer of the
system to another point. The probabilityp(R) of selection of
processR (reaction or diffusion in ajth cell) is proportional to
its contribution to the total rate of escapeν. For chemical
reactionF in a cell j, that means

whereN1F,j, N2F,j denote populations of molecules of two species
involved in the bimolecular reactionF. Similarly, for the
probability of a diffusive jump (to the left or right) of a molecule
Q in a cell j one obtains

Next, the populations{NV,j, NU,j, NE,j, NX,j, NY,j} are updated as
they result from the chosen processR; in terms of the random
walk the system moves to the new point. Given this new state,
generation of dynamics proceeds beginning from the first step,
and so on.

IV. Results and Discussion

Our main interest is in comparison between the deterministic
behavior given by the solutions of the reaction-diffusion
equations and the stochastic description obtained from the
simulations of the master equation. However, we were able to
performe efficient simulations of the master equation for systems
with total number of particles of the order of 106. Concentra-

∂P

∂t |chem
) ∑

j)1

M

(κ1NRNSP(...,NV,j - 1, ...,t) +

κ-1(NV,j + 1)NSP(...,NV,j + 1, ...,t) +
κ2(NV,j + 1)(NE,j + 1)P(...,NV,j + 1, ...,NE,j + 1, ...,

NX,j - 1, ...,t) + κ-2(NX,j + 1)NSP(...,NV,j - 1, ...,

NE,j - 1, ...,NX,j + 1, ...,t) +
κ3(NX,j + 1)NSP(...,NU,j - 1, ...,NE,j - 1, ...,NX,j +

1, ...,t) + κ4(NV,j + 1)(NX,j + 1)P(...,NV,j +
1, ...,NX,j + 1, ...,NY,j - 1, ...,t) +

κ-4(NY,j + 1)NSP(...,NY,j + 1, ...,NV,j - 1, ...,NX,j -
1, ...,t) + κ5(NV,j + 1)NSP(...,NV,j + 1, ...,NU,j - 1, ...,t) +

κ-5(NU,j + 1)NSP(...,NV,j - 1, ...,NU,j + 1, ...,t)) -
νchemP({NV,i, NU,i, NE,i, NX,i, NY,i}, t) (20)

νchem({NV,i, NU,i, NE,i, NX,i, NY,i}) )

∑
j)1

M

(κ1NRNS + κ-1NV,jNS + κ2NV,jNE,j + (κ-2 + κ3)NX,jNS +

κ4NX,jNV,j + κ-4NY,jNS + κ5NV,jNS + κ-5NU,jNS) (21)

∂P

∂t |diff
)

∑
j)1

M

(dV(NV,j-1 + 1) P(...,NV,j-1 + 1, ...,NV,j - 1, ...,t) +

dV(NV,j+1 + 1)P(...,NV,j - 1, ...,NV,j+1 + 1, ...,t) +
dU(NU,j-1 + 1)P(...,NU,j-1 + 1, ...,NU,j - 1, ...,t) +
dU(NU,j+1 + 1)P(...,NU,j - 1, ...,NU,j+1 + 1, ...,t) +
dE(NE,j-1 + 1)P(...,NE,j-1 + 1, ...,NE,j - 1, ...,t) +
dE(NE,j+1 + 1)P(...,NE,j - 1, ...,NE,j+1 + 1, ...,t) +
dX(NX,j-1 + 1)P(...,NX,j-1 + 1, ...,NX,j - 1, ...,t) +
dX(NX,j+1 + 1)P(...,NX,j - 1, ...,NX,j+1 + 1, ...,t) +
dY(NY,j-1 + 1)P(...,NY,j-1, + 1 ...,NY,j - 1, ...,t) +
dY(NY,j+1 + 1)P(...,NY,j+1 + 1, ...,NY,j - 1, ...,t)) -

νdiffP({NV,i, NU,i, NE,i, NX,i, NY,i}, t) (22)

νdiff({NV,i, NU,i, NE,i, NX,i, NY,i}) )
dVNV,1 + dUNU,1 + dENE,1 + dXNX,1 + dYNY,1 +

2∑
j)2

M-1

(dVNV,j + dUNU,j + dENE,j + dXNX,j + dYNY,j) +

dVNV,M + dUNU,M + dENE,M + dXNX,M + dYNY,M (23)

pchem(F, j) ) ν-1
κFN1F,jN2F,j (24)

pdiff(Q, j) ) ν-1dQNQ,j (25)
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tions of reagents in real chemical mixtures are of the order of
1 mol/dm3, and thus a simulated system with such numbers of
particles cannot have a macroscopic size. Therefore, the unit
of length we use throughout the paper is 1µm. We study the
finite system of lengthl ) 5 µm. The length of a cell is
uniquely determined by a number of cells used in division of a
system of given length. Also the time scale in simulations
cannot have usual units (order of seconds). The unit of time
we use in this paper is 1µs. The concentrations are expressed
in usual units of mol/dm3.

The master equation approach can be expected to be valid if
the results of simulations using different system divisions are
consistent, which means they are independent of value ofM
chosen for a given length of the system. We have verified in
the previous paper14 on the trigger wave propagation in the
system of the same length, that the divisions intoM ) 200 and
400 cells give correct results of simulations. It is not necesary
to apply finer divisions, for which the computing time required
for simulations increases, owing to higher rate of diffusive jumps
between thinner cells. Therefore, in simulations performed here
we use the above two values ofM for divisions of the system.

Two values of the diffusion coefficient equal to 2× 10-4

and 10-3 (in µm2/µs) are used. In usual units of cm2 /s these
coefficients are equal to 2× 10-6 and 10-5, respectively. These
values ofD are of the same order as in real fluids.

In order to simulate a formation of the running impulse, we
excite initially the system in the interval [0,1] (inµm) assuming
V ) 1.0 andU ) 3.5, whereas the other concentrations are the
same as in the stationary state. In the remaining part of the
system all concentrations have the stationary valuesVs, Us, Es,
Xs, andYs. In ME simulations the corresponding populations
of molecules in each cell are determined from the condition
that NR/Ω are equal to the above deterministic concentrations.

In Figure 2 we compare the distributions ofV in the system
with faster diffusion,D ) 10-3, obtained for timest ) 200,
400, ..., 1000 (inµs) from the numerical solutions of the
deterministic reaction-diffusion equations (eqs 11-14) and
from the ME simulations. The system is devided intoM )
200 cells of the volumeΩ ) 5 × 10-6 (in µm3). For this value
of D the running impulse, when it is developed, is so wide that
it almost does not have enough room in the system of the

assumed lengthl. Quite good agreement is seen between the
deterministic evolution and the stochastic simulations for shorter
times, when the front of the impulse is developed andV at the
left boundary is falling down. The difference between the
results of the two approaches becomes larger for longer times.
It is due to excitations close to the front of the impulse, which
affect its propagation by changing its instantaneous velocity.
In Figure 2 such fluctuation at the leading edge of the front is
seen fort ) 400, and one can notice that it subsequently induces
a large shift of the front position fort ) 600. This influence
resembles effects observed in simulations of one-variable models
of chemical fronts16,17for which it is even possible to determine
the diffusive spread of the front around its average (determin-
istic) position.16 We have observed the similar effect in the
propagation of the trigger wave14 described by the reduced
version of the scheme in eqs 1-5. Fluctuations are much less
significant at the back of the impulse, where the strong
deterministic dynamics prevails. Indeed, one can see in Figure
2 that the agreement between the stochastic and deterministic
description for long times is better for the back of the impulse
than for its front. The concentrations of all reagents in the
uniform region seen behind the running impulse are not equal
to the stationary values. As follows from the results for the
homogeneous system,11 the time needed to return after excitation
to the stationary state is above 3000, which is much longer than
we can reach in ME simulations in this paper.

Figures 3-5 show the snapshots of distributions ofV obtained
by numerical solutions of eqs 11-14 and by the ME simulations
with the diffusion coefficientD ) 2 × 10-4. In Figures 3 and
4 the ME simulations are performed for the sameΩ ) 5 ×
10-6 (in µm3) but for M ) 200 andM ) 400, respectively,
whereas Figure 5 shows results forΩ ) 8.33× 10-6 andM )
400. According to the deterministic predictions, the impulse
moves slower and becomes sharper when the diffusion coef-
ficient is smaller. This effect can be observed by comparing
Figures 3 and 2, which depict results for the same system but
with different diffusion coefficientsD ) 2 × 10-4 and 10-3,
respectively. This relation is also confirmed in stochastic
simulations. As in the previous case, agreement between the
deterministic evolution and the ME simulations is relatively
good during the initial period, for which fluctuations affect only

Figure 2. Snapshots of the distributions ofV in the system divided
into M ) 200 cells of the volumeΩ ) 5 × 10-6 (in µm3) with D )
10-3 (in µ m2/µs) at times (inµs): t ) 200 (the points), 400 (the very
short dashed line), 600 (the short dashed line), 800 (the dashed line),
and 1000 (the long dashed line). The corresponding numerical solutions
of the reaction-diffusion equations (eqs 11-14) are shown as solid
lines.

Figure 3. Snapshots of the distributions ofV in the system divided
into M ) 200 cells of the volumeΩ ) 5 × 10-6 (in µm3) with D )
2 × 10-4 (in µm2/µs) at times (inµs): t ) 100 (the points), 600 (the
very short dashed line), 800 (the short dashed line), 1100 (the dashed
line), and 1200 (the long dashed line). The corresponding numerical
solutions of the reaction-diffusion equations (eqs 11-14) are shown
as solid lines.
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front propagation velocity. This is the effect similar to that
seen in Figure 2. Additional, qualitatively different effects of
fluctuations can be seen in the system with slower diffusion.
Diffusion introduces coupling between adjancent cells, and
therefore, fluctuations in individual cells are not independent.
The slower is diffusion, the coupling extends over smaller
distance, and domains of excitations can easier grow to
macroscopic size. In this way fluctuations generate spontaneous
impulses of excitation in the region ahead of the initial impulse.
After such impulse is created, it expands according to the wave
mechanism and can collapse with the original front. This is an
essential difference in comparison with the system with the
higher diffusion coefficient. Spontaneous creation of such
impulses is a purely stochastic effect, which is excluded in the
phenomenological description. Such effects are seen at a later
period of the stochastic evolution. Local excitations are more
probable close to the right boundary (see Figures 4 and 5),
because the smoothing effect of diffusion is weaker at an

impermeable wall (fluctuation are there spread only in one
direction). However, they are not excluded also at some
distance from the boundary (see Figure 3). The simulations of
the homogeneous excitable system11 have shown that fluctua-
tions grow more easily in a system with smaller volume. This
effect is also seen in Figure 3 and 4, which present the results
obtained for the systems in which only volumes of cells are
different. Most of the system with a smaller cell is excited at
time t ) 1200 (see Figure 3), whereas a much smaller region
became excited att ) 1300 in Figure 4 for larger cells.

Fluctuations are able to excite locally the system that at initial
time has uniform distributions of all reagents. Development
of such local excitations needs longer time intervals than those
used in simulations of the running impulse discussed above.
We could not reach these times in ME simulations for higher
diffusion coefficient with our computer facilities. Evolution of
local excitations in the system characterized byD ) 2 × 10-4,
M ) 200, andΩ ) 5 × 10-6 is depicted in Figures 6 and 7.
Until t ) 400, fluctuations were not able to induce local
excitations that could survive. The snapshot fort ) 400 shows
the initial stage of formation of the excitations, which have just
passed the “critical value”. The right excitation is smaller, less
developed than the left one. In order to compare the further
stochastic evolution with the deterministic behavior we assumed
the distributions of all reagents att ) 400 as the initial conditions
for the reaction-diffusion equations, (eqs 11-14). The results
of numerical solutions were in quite good agreement in the left
part of the system, but the excitation atx ) 4 did not survive.
These solutions are not shown in Figure 6. The deterministic
prediction is incorrect in this case because in a range of
concentrations close to the stationary state the deterministic
dynamics is weak, and therefore fluctuations are relatively more
important. We have obtained much better agreement between
the stochastic evolution and numerical solutions of eqs 11-14
if the distributions of all reagents att ) 600 are chosen as the
initial condition. These results are shown in Figure 6. The
agreement in the left part of the system is very good, but the
most right excited domain obtained in ME simulations is slightly
shifted to the left with respect to the deterministic profile. The
later period of the stochastic evolution up to decaying of

Figure 4. Snapshots of the distributions ofV in the system divided
into M )400 cells of the volumeΩ ) 5 × 10-6 (in µm3) with D ) 2
× 10-4 (in µm2/µs) at times (inµs): t ) 100 (the points), 500 (the
very short dashed line), 800 (the short dashed line), 1000 (the dashed
line), and 1300 (the long dashed line). The corresponding numerical
solutions of the reaction-diffusion equations eqs 11-14 are shown as
solid lines.

Figure 5. Snapshots of the distributions ofV in the system divided
into M ) 400 cells of the volumeΩ ) 8.33× 10-6 (in µm3) with D
) 2 × 10-4 (in µm2/µs) at times (inµs): t ) 200 (the points), 400 (the
very short dashed line), 600 (the short dashed line), 800 (the dashed
line), and 1000 (the long dashed line). The corresponding numerical
solutions of the reaction-diffusion equations (eqs 11-14) are shown
as solid lines.

Figure 6. Snapshots of the distributions ofV in the initially
homogeneous system with the same parameters as in Figure 3 at times
(in µs): t ) 400 (the points), 600 (the solid line), 700 (the very short
dashed line), 800 (the short dashed line), 900 (the dashed line), and
1000 (the long dashed line). The distribution att ) 600 was used as
the initial condition in numerical solutions of the reaction-diffusion
equations (eqs 11-14), which are shown as solid lines at the
corresponding times.

Excitable Spatially Extended Chemical Systems J. Phys. Chem. A, Vol. 102, No. 29, 19985979



excitation is shown in Figure 7. The very good agreement
between the results of ME simulations and deterministic
evolution is obtained if the distributions of all reagents fort )
1100 are taken as initial conditions for eqs 11-14. For
sufficiently long time,t ) 2400, the whole system becomes
uniform, which is consistent with the determinisctic result. If
the distributions of concentrations are sufficiently far from their
stationary values, then they are in strong vector direction field
determined by the phenomenological equations and small
fluctuations do not influence significantly the dynamics of the
system. This is the reason why the deterministic description
gives satisfactory approximation to the ME simulations in such
cases. The situation is completely different if the concentrations
distributions are close to the stationary state where the vector
direction field is weak. In this case fluctuations become the
dominant factor that governs the dynamics of the system, and
the deterministic description fails.

There is no direct relation between our model and realistic
mechanisms of the B-Z reaction and other excitable systems.
Nevertheless, the results of our ME simulations can be helpful
in explanation of the old but still not completely solved problem
of a character of sources of target patterns observed in the B-Z
system.27 Two different concepts have been taken into account
in phenomenological description of these patterns. Heteroge-
neous sources (pacemakers) are small regions with parameters
different from those in the bulk.1,28-31 Such heterogeneities can
increase frequency of oscillations (in oscillatory regime) or they
can induce localized Hopf bifurcation from excitable to oscil-
latory regime in excitable system. Homogeneous sources
(leading centers) describe the same effects, but only local
perturbations of reagents concentrations are allowed and the
target patterns appear owing to intrinsic chemical dynamics.32-38

The ME approach allows a stochastic description of the target
patterns that appear in excitable systems. In order to simulate
the target patterns, the size of the system must be much larger
than that considered here because it has to allow for generation
of the tail of the impulse where the next spontaneous excitation
is possible. This condition means also much longer time of
simulations. Let us assume now that at some instant a first
excitation is generated in some place and the next two running
impulses spread from it. Other excitations can also appear later

on in a region that is not reached by the first impulse. The
place of the first excitation returns to a neighborhood of the
stationary state earlier than regions that became excited later,
and therefore, it has a good chance to be excited again before
other places. In this way the next pair of running impulses could
be generated there, and this place becomes the leading center.
The same scenario occurs in the regions that were excited later.
All places in which excitations were generated appear to be in
an apparently oscillatory regime with a “period” of oscillations
of order of the “return time”, and all of them become sources
of impulses. Since the return time has some distribution, one
can expect that subsequent running impulses generated by each
source will not be equidistant, but this effect can be really small
if the distribution is sharp.

V. Conclusions

Our results of ME simulations show that internal fluctuations
can induce local excitations that strongly disturb the behavior
predicted by phenomenological dynamics for spatially extended
excitable systems. Fluctuations not only affect the velocity and
shape of the running impulses but they can also generate new
spontaneous excitations that interact with the earlier developed
impulse. In this way larger regions of the system become
excited than predicted by solutions of the coresponding reac-
tion-diffusion equations.

The comparison of the results of ME simulations performed
for homogeneous (ideally stirred) excitable systems, in which
only global fluctuation are possible,11 with the results presented
in this paper shows that local fluctuations have much stronger
influence on the behavior of the spatially extended systems. The
spatially extended system is excited more easily than the well-
stirred system with a similar number of molecules. The reason
for this is that in the extended system excitations can occupy
initially only a small part of the system. Such localized
fluctuations are much more easily created than perturbation of
the system as a whole, and they can survive if diffusion is
sufficiently slow. Therefore, the phenomenological description
that does not include fluctuations seems to be much more
satisfactory for the well-stirred systems than for the spatially
extended ones. On the other hand, if concentration distributions
are locally sufficiently far from stationary values, then the
phenomenological description based on reaction-diffusion
equations is in reasonable agreement with the stochastic
dynamics.

As one can expect, an enlargement of the diffusion coefficient
increases the velocity and the width of the running impulse.
These properties have been observed in numerical solutions of
the phenomenological equations as well as in our ME simula-
tions. Moreover, the higher diffusion coefficient makes the
appearance of excitations more difficult.

It is noteworthy that our chemical model is simple and
realistic, and therefore, it indicates that it should be possible to
find simple real systems, in which the influence of fluctuations
can be tested experimentally. The crucial steps correspond
directly to the Langmuir-Hinshelwood (or the Michaelis-
Menten) kinetics to which an inhibition by excess of the reactant
is added. Such schemes have been used to describe kinetics of
many enzymatic reactions.
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