5974 J. Phys. Chem. A998,102,5974-5981

Master Equation Approach to Fluctuations in a Model Excitable Spatially Extended
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A simple and realistic model of an excitable chemical system in which running impulses can be observed is
studied. Mesoscopic characteristics of the model are obtained by numerical simulations of the master equation
for spatially extended system. Velocity of the impulse and its shape obtained in the simulations agree well
with the phenonenological description. For small diffusion coefficients, fluctuations grow locally and create
impulses of excitations. Formation of such impulses cannot be described by the phenomenological approach.
However, if an excitation is sufficiently developed, its subsequent evolution can be predicted with reasonable
accuracy by phenomenological equations.

I. Introduction substantial part of the system. We study these phenomena in

In an excitable regime, a nonlinear dynamical system has only the present paper using phenomenological and stochastic
one attractor and all trajectories attend it asymptotically. In descriptions. In order to include local fluctuations in the
the simplest case the attractor is a stable stationary state description of dynamics of an excitable system we use the
However, not all trajectories are directly attracted to this state. Master equation (ME) approah’? which accounts for sto-
Trajectories beginning at some distance from the stable station-chastic character of chemical and diffusion processes. Spatially
ary state initially go away from it and only later on are they extended inhomogeneous as well as homogeneous systems at
attracted back to it, whereas trajectories initialized sufficiently the initial instance will be considered. We extend here our
close to the stable stationary state are directly attracted to it. Previous investigations on the influence of global fluctuations
Such properties can exhibit only nonlinear dynamical systems on the behavior of the homogeneous (ideally stirred) excitable
whose behavior is governed by two or more variables. Usually, SyStem:* In particular, we are concerned with the influence of
the excitable systems are close to either the Hopf bifurcation diffusion on the dynamics of local fluctuations.
in which they switch to an oscillatory regime or to a saddle-  We want to stress that at present it is not possible to study
node bifurcation in which bistability appears. There are known effectively any real chemical system exhibiting excitable
many chemical systems that exhibit excitabifityThey can be dynamics (like the B-Z reaction) by the master equation
excitable only in far-from-equilibrium conditions. The best approach. Therefore, one must consider models as simple as
known example of excitable systems is the Belousthabo- possible, which can be efficiently simulated using numerical
tinsky (B—Z) reaction. Perturbations of the stable stationary methods. Recently, we have constructed the simple but realistic
state with high concentration of the reduced catalyst by additions chemical model that exhibits excitabillyas well as oscillatory
of small amounts of a silver ion solution can generate a rapid behaviot?in homogeneous systems. In these cases only global
increase (pulse) of concentration of the oxidized form of the fluctuations were taken into account. The model consists of
catalyst after which the system returns to the stationary state.bimolecular reactions excluding autocatalysis, and therefore it
In spatially extended systems, such local perturbations can leadcan be easily simulated by ME method as well as by molecular
to generation of the single impulse of concentrations spreading dynamics technique for reactive hard sphéfedVe consider
with a constant velocity=” If ferroin is used as the catalystin  here the same chemical scheme as in the previous pgérs,
the B—Z reaction the running impulse is seen as the blue zone but now we include local fluctuations by considering a spatially
spreading through the red solution. extended system in which inhomogeneities can appear. We

The dynamics of excitable systems can be sensitive to internalexamine the relation between the stochastic and deterministic
fluctuations. Small fluctuations around a stable stationary state descriptions by comparing the results of the master equation
are damped, but sufficiently large fluctuations can induce large approach with the solutions of the corresponding reaetion
deviations of concentrations from the stationary state. One candiffusion equations. For spatially extended systems, the ME
expect an important difference in the influence of fluctuations approach has been already applied to study effects of fluctuations
on the behavior of stirred and unstirred excitable chemical in models of bistable systefd?1415 and the model with
systems. An ideally stirred excitable system may be treated aschemical kinetics described by the quadratic autocatalytic {&rm.
homogeneous. If a size of a system is small, homogeneity canThese models have been also studied by the Langevin approach,
also be maintained by sufficiently fast diffusion. In an unstirred which is based on introduction of noise terms to corresponding
spatially extended excitable system, diffusion is not always able phenomenological equatiohs. Many important results con-
to disperse local fluctuations of concentrations. In this case cerning stochastic effects in the dynamics of explosive systems
local fluctuations can increase and form domains in which has been proved by Zel'divich and co-workétshut these
concentrations rapidly go away from the stable stationary state.results have not been obtained from the ME approach. To our
These domains can grow to impulses of excitations that next best knowledge there are no papers using the ME approach to
expand owing to the traveling wave mechanism and cover a excitable spatially extended chemical systems.
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The paper is organized as follows: In section Il the chemical where the italicized symbols of the reagents are used to denote
scheme is described, and next a phenomenological dynamicgheir concentrations for convenience, because this notation does
based on reactiondiffusion equations is analyzed. In section not cause any misunderstandings.

IIl the master equation and the algorithm for its simulations  In the sequel we will assume that diffusion coefficients of
are presented. In section IV the results are presented andall reagents are identical and equal@o Moreover, initial
discussed. Section V contains conclusions. distributions of a total concentration of the catalyst or the
enzyme E(x, 0) + X(x, 0) + Y(x, 0)) are constant in space. In
this case the sunk(x, t) + X(x, t) + Y(x, t) = Eo remains
constant for time > 0, and therefore, one of the variables (say
Y(x, t)) can be eliminated. Thus, the dynamics of the system

Il. Phenomenological Model
The model consists of nine elementary (bimolecular) pro-

cesses: can be described by four reactiodiffusion equations only:
kl
R+S=V+S 1 92
1 W v D—V KRS— K_VS— KVE + k_,XS— kVX+
ot
V+E<= X +S (2) k_4(E; — E— X)S— k;VS+ k_ US (11)
oy gU
X+ S—k3> E+U 3) o Da— = kyXS+ k,VS— k_5YS (12)
k4
X+V=Y+S 4 2
ks *) 88—? - D% = —kKVE+ (k_, + ko)XS (13)
V4S==U+S ) ,
e X IR ) VE— (., + k)XS— kVX +
ot axz 2 —2 3 4

The reactant V is transformed to the product U with E as the
catalyst (steps 2 and 3). This part of the scheme is the k_4(Eo
modification of the well-known LangmuirHinshelwood mech-

anism of catalytic reactions (or the Michaetilenten kinetics In order to argue on possibility of running impulse solution
for enzymatic reactions). Step 4 describes the inhibition of the to these equations, let us consider the case of the homogeneous
Langmuir-Hinshelwood mechanism (or the Michaeliglenten system. In the previous papétd®>we have shown that the
scheme) by an excess of the reactant V. Moreover, the reactantorresponding kinetic equations (without the diffusion terms)

V is transformed directly to the product U in the step 5. The have only one stationary state given by

system is open, owing to step 1, in which the reactant V is

produced from the reagent R, whose concentration is maintained V.= R (15)

—E-X)S (14)

constant. Itis assumed that S is a solvent whose concentration Ky
is also kept constant. One can arrange such conditions in a
continuously fed unstirred reactor (CFUR) or a so-called “gel ksEoSR R

disc reactor’. Because we are interested in inhomogenous ~° kok_s(ko(FI(K,K,) + RS + K, S(k_, + ky) * KiKg
systems, we allow for initial distributions of reagent concentra- (16)
tions that depend on spatial coordinates. Therefore, local mass

balance equations with reaction and diffusion terms for each E,S(k_, + k)

reagent separately must be used to describe the dynamics of = > a7
the system. According to the mass action law, the behavior of (RA(KIK,) + RSK )k, + Sk, + ky)

the system is described by five reactiediffusion equations

for V, U, E, X, and Y. For simplicity we restrict our X, = E:SRK (18)

considerations to one-dimensional systems. The kinetic equa- (RI(K,K,) + Rk, + K, F(k_, + ky)
tions have the form

whereK; = k_i/kj fori = 1, 4, and 5. For appropriate choice
of the rate constants and the concentrationS, & andEg the
stationary state is attracting. ME simulations can be performed
in the efficient way if the rate constants are not very different,
which means that all reactions occur at similar time scale. Also
values of the diffusion coefficients have to be chosen in such a
way that spreading of running impulses can be detected in
reasonable intervals of time and size of the system. For the

2
Q/_D A%

" 2 = kiRS—K VS~ kVE+k XS~

k,VX + k_,YS— kVS+ k_cUS (6)

oy U

G D T kXSTRVS—koYS @

= —KVE + (k_, + kXS ®)

X 2x

ot Dxn = KVE— (Ko TRXS— VXK LYS (9)

2
o _p oY
At e

= K,VX—k_,YS (10)

same reason, ratios of the concentrations of all reagents should
not differ by many orders of magnitude. In particular, in
simulations described below we have used 0.1, R = 0.2,
Eo = 0.2 andk; = 0.01,k-; = 0.012,k, = 8.0, k_» = 0.1, ks
=39,ki=1.0,ks =4.0,ks = 0.1, ks = 0.1. Two values
of the diffusion coefficients are selecte® = 2 x104 andD
=103

For the chosen values of the parameters the concentrations
at the stationary state are equal to
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V,=0.166 66U, = 4.710 35, = 0.034 95, 5.0
X, = 0.116 50

and the characteristic equation has two negative and two 45
complex eigenvalues equal to

A, =1.963 16/, = —0.753 50,,, = —0.005 73+

0.006 44, 1, = —0.005 73— 0.006 44 =0

The homogeneous system exhibits excitalilifipr the above
values of the rate constants and concentratior Bf andEq. 3.5
We have verified by numerical calculations for finite in space
systems with zero-flux boundary conditions that egqs 14 have
solutions of a type of running impulse for properly chosen initial
conditions.

To our best knowleadge there are no theorems that allow for &
direct predictions of existence of asymptoptic solutions of a set Figure 1. Schematic picture for the N-shaped nullcline éoand the
of reaction-diffusion equations in the form of the running nullcline for 3 (the dashed line).
impulses. Usually this form of asymptotic solutions is assumed
in advance and next is verified in numerical calculations.
Excitability itself is not sufficient to get the running impulse. ;
Even if a system is locally excited, the pulse of excitation can STaller than the concentrations ®f and U, then one can
decay because a back of it can move faster than its front. In ellmlr\ate_the variableg aqu using the T.|khonov theoreﬁi
order to shed light on the problem one can use arguments base@nd in this way one obtains the two-variable system with the
on the Kanel theorer;20 which determines the existence of \-shaped nulicline fol on theV x U plane. The nulicline

the running front solutions for one-variable reactiatiffusion for U intersects the N-shape nulicline in a point at which the
equation for an infinite system. We will shortly explain below system is excitable, and one obtains the model discussed above.
how this theorem can be used to argue that the running impu|seTherefore, one can hope that for proper values of the parameters

type solutions can be expected for a set of coupled equationsthe solutions of our model will have the properties discussed

consisting of two reactiondiffusion equations (say, for vari-  2P0Vve, namely, that the asymptotic solution of the corresponding
ableso. and ). Our approach is based on the assumption that initial value problem will have the form of running impulse for

a is a fast variable as compared with The similar assumption all four variables. These considerations have been verified by
was used previously in construction of models for stationary NuMerical calculations in which the initial value problem was
periodical structured! trains of impulse€223 and standing replaced by the initial-boundary value problem with zero-flux
waveg* in chemical systems. Let us assume that for homoge- boundary conditions. Solutions to this last problem are very
neous conditions the equation farhas a N-shaped nulicline ~900d approximations of the initial value problem provided that
on the phase plane x . Assume next that a nulicline fgt the formed impulse is far from the boundaries of the system.

intersects the N-shaped nulicline at a left attracting branch, in
such way that the system is excitable (see Figure 1). For
sufficiently large initial local excitation of. one can argue that The mesoscopic treatment of a spatially extended (in one
in fast time scale the variabl@ remains equal to its initial dimension) chemical system is an extension of this approach
stationary value and a front ofwill be formed and next spread  applied to the corresponding uniform syst&mThe system is
with constant velocity according to the Kanel theorem. In the divided into (let's sayM cells along the spatial coordinate; the
region left behind by the traveling front of the distribution of volume Q and the lengthAl of each cell are identical. The

p changes in slow time scale, and there the distribution af state of our system is described by the probability distribution
the fast variable is determined by the right attracting branch of P({Ny;, Nu;, Nei,Nxi, Ny}, t) of finding a set of populations
the N-shaped nulicline. In this way a plateau of the distribution Ng; of speciesQ =V, U, E, X, Yinacelli =1, ...M. (A

of a is formed because the front of spreads over the slow  number of moleculeR andSin each cell is assumed constant,
time scale. At some instance, in the region of initial excitation equal toNg = R Q andNs = $Q.) A number of molecules
the variablef reaches a minimal value allowed on the right Ny;, Nu,, Ngi, Nx;, Ny; in ith cell can be changed either by a
attracting branch of the N-shaped nullcline, and at this moment chemical reaction between molecules within a cell or by a
one must return to the fast time scale in which the distribution transfer of a molecule to or from adjacent cells. Both these
of a joining right and left attracting branches of the N-shaped processes independently contribute to the time evolution of the
nulicline is formed. In this way a “back” of the impulse begin distribution function in the spatially extended system, and the
to form. Theng increases a little and eventually reaches a value master equation (ME) fd? can be schematically written in the

at which a velocity of just formed “back” of the impulse form

becomes equal to the velocity of the running front formed
previously. The impulse oft formed in the above way runs
away from the region of the initial excitation, and if the
velocities of the front and the back remain equal to each other
then the running impulse spreads with constant velocity. In The contribution due to the chemical processes describes
this case asymptotic solutions of the initial value problem for reactions that can involve only molecules in a single cell,
o andp have the formuo(t, X) = a(&) andg(t, X) = (&), where provided that populations in other cells remain unchanged. It
& = x &+ ct andc denotes the velocity of the running impulse. is a straightforward extension of the corresponding term in the
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For our model it is easy to check that if one assumes that the
total concentration of catalyst (or the enzynt&) is much

[ll. Master Equation

0 oP
ﬁp({ Ny Nyjis Nejy Ny, Ny}, 1) = o

P
chem  dt

(19)

diff
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master equation for the uniform systém

P
ot

M
= Z(KlNRNSP(..., Ny;—1,...0+
chem =
i 1(Nyj + DNP(, Ny + 1, ) +
ka(Ny; + D(Ngj + DPCo, Ny + 1, Ng; + 1,
Ny = 1, o) + (N + DNPC, Ny — 1, oy
NE,j - 1, ""nyj + 1, ...,t) +
eaNyj + NP, Ny = 1, oo Ngj = L, Ny +
1, )+ 14Ny + )Ny + DP(, Ny +
1, N+ 1, Ny — L, ) +
K*4(NY,j + 1)NSP("" NY,J + 1, ""NV,j - 1, ""NX,j
1, ) F 5Ny + DN Ny + 1, oo Ny — L, ) +
k_g(Nyj + DNP(oo,Ny; — 1, Ny + 1, .0) —

VenenP({ Nyjis Nyjis Nejiy Ny, Ny}, 1) (20)

The notation (...Ngj, ...) means that exceply; all populations

in the distribution functiorP remain unchanged. The positive
components of the right-hand side of eq 20 describe creation
of a given state, resulting from transitions from other states.
The coefficientvehem provides the rate of escape from the
configuration{Ny,, Nu,, Nei, Nx;, Ny;} as a result of any of
chemical processes—b. Thus, it is given by the sum of the
rates of all these chemical reactions:

Venenf{ Nvis Nujis Nejis Ny Nyi}) =
M

Z (,sNRNg + 1Ny jNg + Ny Nej + (k5 + kg)Ny Ng +
=

j

K4NX,jNV,j + K74NY,jNS + KSNV,j Ng + KfsNu,st) (21)

The coefficients; are related to the rate constaktef reactions
1-5 by« = k/Q. This relation ensures that the kinetic terms
in eqs 6-10 can be recovered from eq 20 in the lirfdt— oo,
as the relations for the average concentratidig €[]

It is assumed that every particle can jump with certain
probability to a neighbor cell. These hoping rates are related
to the diffusion coefficients and in general can be different for

each species. The term of eq 19 describing diffusion has then

the following form:

P
diff

ot

M
Z(dV(N\,,j,1 +1)P(., Ny +1,0,Ny — 1,0 +
£

ANy i1+ 1Py Ny = 1, Nyjq + 1, ) +
dy(Nyj 1+ DP(oey Ny g + 1, 0Ny — 1, ) +
dy(Nyje1+ DPCooy Nyj = L, o Nyjpy + 1, ) +
de(Ngj 1 + 1P, Ngj g+ 1, oo Ngj — 1, o) +
de(Nejrg + DPCooy Ny — 1, oo, Nejg + 1, ) +
Oy(Nyj 1+ DPCoey N+ 1, oo Ny — L, ) +
Ohy(Nyjr1 + DPCoes Ny = 1, oo, Ny + 1, o) +

dY(NY,j—l + 1)P(..., NY,j—l’ + 1 ""NY,j - 1, ...,t) +
dY(NYJ-Jrl + 1)P(..., NY,j+1 + 1, ...,NY’]- —1,..,1)—
Vet P({ Ny, Nyjis Nej, Ny, NY,i} 1) (22)

In this equation, the terms for boundary cejls; 1 andM, are
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determined by boundary conditions. For impermeable walls,
what is the case considered here, transitions of molecules outside
the system are forbidden. The coefficienk:, describing the
total rate of diffusive jumps for all cells, can be written as:

Vit ({Nys Nuj» Nejs Ny, Nyi}) =
dVNV,l + dUNU,l + dENE,l + dXNX,l + dYNY,l +
M-1

2Z (dyNy; + dyNy; + deNg; + dyNy; + dNy)) +
£
dVNV,M + dUNU,M + dENE,M + dXNX,M + dYNY,M (23)

The relation between the transition ratkgand the diffusion
coefficientsDq follows from the condition that the diffusion
flux of the componenQ, —A-DoAng/Al (whereA is a surface

of a cross section of a cell), is obtained from the average value
of the net transition rate @ between adjacent cells. This yields
the relationdqg = Dg/(Al)?, which shows that for a given value

of the macroscopic diffusion coefficient the hoping rates
increase for finer divisions.

The master equation gives the description of the stochastic
system in terms of the probability distribution function. From
equivalent point of view, the stochastic dynamics can be
considered as a random walk of an individual system. In the
case of our system, it is the random motion in a discrete space,
where coordinates of each point correspond to a specific
configuration of population§Ng;} in cells. We have performed
simulations of this (continous time) random walk applying the
method of Gillespié® to generate a stochastic trajectory. Let
us assume that the system at an instastin a state which is
given by the poin{Ny;, Nu;, Ngj, Nx;, Nv;}. The total rate of
escape of the system from this point due to any reaction or
diffusion process is equal t0 = vchem + vair. According to
this, in the first step of the algorithm, a waiting tinadfor the
transition is sampled from the exponential distribution with the
meanv~1. The next step consists of choosing a particular
reaction or diffusion process, which causes a transfer of the
system to another point. The probabilipgo) of selection of
processu (reaction or diffusion in ath cell) is proportional to
its contribution to the total rate of escape For chemical
reactionp in a cellj, that means

pchen(p! J) =V 1Klep,j N2p,j (24)
whereNy,;, No,j denote populations of molecules of two species
involved in the bimolecular reactiop. Similarly, for the
probability of a diffusive jump (to the left or right) of a molecule
Q in a cellj one obtains

Pairr(Q: J) = ’VildQNQ,j

Next, the population§Ny;, Nuj, Ng;j, Nx;, Ny;} are updated as
they result from the chosen procassin terms of the random
walk the system moves to the new point. Given this new state,
generation of dynamics proceeds beginning from the first step,
and so on.

(25)

IV. Results and Discussion

Our main interest is in comparison between the deterministic
behavior given by the solutions of the reactiafiffusion
equations and the stochastic description obtained from the
simulations of the master equation. However, we were able to
performe efficient simulations of the master equation for systems
with total number of particles of the order of®.0Concentra-
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Figure 2. Snapshots of the distributions ®fin the system divided
into M = 200 cells of the volum& =5 x 1075 (in um?) with D =
1073 (in u m?/us) at times (irus): t = 200 (the points), 400 (the very
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Figure 3. Snapshots of the distributions dfin the system divided
into M = 200 cells of the volumé&2 = 5 x 1076 (in umd) with D =
2 x 1074 (in um?/us) at times (inus): t = 100 (the points), 600 (the

short dashed line), 600 (the short dashed line), 800 (the dashed line),very short dashed line), 800 (the short dashed line), 1100 (the dashed
and 1000 (the long dashed line). The corresponding numerical solutionsline), and 1200 (the long dashed line). The corresponding numerical

of the reactionr-diffusion equations (eqs *114) are shown as solid
lines.

solutions of the reactiondiffusion equations (egs *114) are shown
as solid lines.

tions of reagents in real chemical mixtures are of the order of assumed length Quite good agreement is seen between the

1 mol/dn®, and thus a simulated system with such numbers of

deterministic evolution and the stochastic simulations for shorter

particles cannot have a macroscopic size. Therefore, the unittimes, when the front of the impulse is developed &rat the

of length we use throughout the paper igrh. We study the
finite system of length = 5 um. The length of a cell is
uniquely determined by a number of cells used in division of a
system of given length. Also the time scale in simulations

left boundary is falling down. The difference between the
results of the two approaches becomes larger for longer times.
It is due to excitations close to the front of the impulse, which
affect its propagation by changing its instantaneous velocity.

cannot have usual units (order of seconds). The unit of time In Figure 2 such fluctuation at the leading edge of the front is

we use in this paper isds. The concentrations are expressed
in usual units of mol/dih

seen foit = 400, and one can notice that it subsequently induces
a large shift of the front position far= 600. This influence

The master equation approach can be expected to be valid ifresembles effects observed in simulations of one-variable models

the results of simulations using different system divisions are
consistent, which means they are independent of valugl of
chosen for a given length of the system. We have verified in
the previous papét on the trigger wave propagation in the
system of the same length, that the divisions Mte= 200 and

of chemical front&17for which it is even possible to determine
the diffusive spread of the front around its average (determin-
istic) positioni® We have observed the similar effect in the
propagation of the trigger wa¥edescribed by the reduced
version of the scheme in eqs-5. Fluctuations are much less

400 cells give correct results of simulations. It is not necesary significant at the back of the impulse, where the strong

to apply finer divisions, for which the computing time required
for simulations increases, owing to higher rate of diffusive jumps

deterministic dynamics prevails. Indeed, one can see in Figure
2 that the agreement between the stochastic and deterministic

between thinner cells. Therefore, in simulations performed here description for long times is better for the back of the impulse

we use the above two values M for divisions of the system.
Two values of the diffusion coefficient equal to2 1074
and 1072 (in um?us) are used. In usual units of érfs these
coefficients are equal to 2 106 and 105, respectively. These
values ofD are of the same order as in real fluids.
In order to simulate a formation of the running impulse, we
excite initially the system in the interval [0,1] (irm) assuming
V = 1.0 andU = 3.5, whereas the other concentrations are the

than for its front. The concentrations of all reagents in the
uniform region seen behind the running impulse are not equal
to the stationary values. As follows from the results for the
homogeneous systeththe time needed to return after excitation
to the stationary state is above 3000, which is much longer than
we can reach in ME simulations in this paper.

Figures 3-5 show the snapshots of distributions\obbtained
by numerical solutions of eqs +1.4 and by the ME simulations

same as in the stationary state. In the remaining part of the with the diffusion coefficienD = 2 x 1074, In Figures 3 and

system all concentrations have the stationary valuedls, Es,
Xs, andYs. In ME simulations the corresponding populations
of molecules in each cell are determined from the condition
thatN./Q are equal to the above deterministic concentrations.
In Figure 2 we compare the distributions\éfin the system
with faster diffusion,D = 1073, obtained for timeg = 200,
400, ..., 1000 (inus) from the numerical solutions of the
deterministic reactiondiffusion equations (eqs #14) and
from the ME simulations. The system is devided ifo=
200 cells of the volum& =5 x 1078 (in um3). For this value
of D the running impulse, when it is developed, is so wide that

4 the ME simulations are performed for the sa@e= 5 x

1076 (in um3) but for M = 200 andM = 400, respectively,
whereas Figure 5 shows results far= 8.33 x 1075 andM =

400. According to the deterministic predictions, the impulse
moves slower and becomes sharper when the diffusion coef-
ficient is smaller. This effect can be observed by comparing
Figures 3 and 2, which depict results for the same system but
with different diffusion coefficientd = 2 x 104 and 1073,
respectively. This relation is also confirmed in stochastic
simulations. As in the previous case, agreement between the
deterministic evolution and the ME simulations is relatively

it almost does not have enough room in the system of the good during the initial period, for which fluctuations affect only
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Figure 4. Snapshots of the distributions ¥fin the system divided Figure 6. Snapshots of the distributions o in the initially
into M =400 cells of the volum& =5 x 1078 (in um?) with D = 2 homogeneous system with the same parameters as in Figure 3 at times

x 107 (in um?us) at times (inus): t = 100 (the points), 500 (the (in us): t =400 (the points), 600 (the solid line), 700 (the very short

very short dashed line), 800 (the short dashed line), 1000 (the dasheddashed line), 800 (the short dashed line), 900 (the dashed line), and

line), and 1300 (the long dashed line). The corresponding numerical 1000 (the long dashed line). The distributiontat 600 was used as

solutions of the reactiondiffusion equations eqs 114 are shown as the initial condition in numerical solutions of the reactiadiffusion

solid lines. equations (egs *14), which are shown as solid lines at the
corresponding times.

1.2
' impermeable wall (fluctuation are there spread only in one
direction). However, they are not excluded also at some
distance from the boundary (see Figure 3). The simulations of
the homogeneous excitable systéimave shown that fluctua-
tions grow more easily in a system with smaller volume. This
effect is also seen in Figure 3 and 4, which present the results
obtained for the systems in which only volumes of cells are
different. Most of the system with a smaller cell is excited at
timet = 1200 (see Figure 3), whereas a much smaller region
became excited at= 1300 in Figure 4 for larger cells.

Fluctuations are able to excite locally the system that at initial
time has uniform distributions of all reagents. Development
of such local excitations needs longer time intervals than those
O‘Oo,d”""ﬁﬂ’d”"'"2‘,‘(')"”‘%‘6””"2;"‘(3"""‘5‘»0 used in simulations of the running impulse discussed above.

X We could not reach these times in ME simulations for higher
Figure 5. Snapshots of the distributions dfin the system divided diffusion coefficient with our computer facilities. Evolution of
into M = 400 cells of the volumé& = 8.33 x 10°° (in um®) with D local excitations in the system characterizedby= 2 x 1074,
=2x 104 (in Mmzlﬂ_s) attimes (irus): t = 200 (the points), 400 (the M = 200, andQ = 5 x 1076 is depicted in Figures 6 and 7.
very short dashed line), 600 (the short dashed line), 800 (the dashedUnt” t = 400, fluctuations were not able to induce local

line), and 1000 (the long dashed line). The corresponding numerical Y .
solu)tions of the Seactiongiﬁusion equa)tions (egs H.’Fl)4) aregshown exc'_ta_t'_ons that could survive. The sngpghottfer4pO ShOWS_
as solid lines. the initial stage of formation of the excitations, which have just
passed the “critical value”. The right excitation is smaller, less
front propagation velocity. This is the effect similar to that developed than the left one. In order to compare the further
seen in Figure 2. Additional, qualitatively different effects of stochastic evolution with the deterministic behavior we assumed
fluctuations can be seen in the system with slower diffusion. the distributions of all reagentsiat 400 as the initial conditions
Diffusion introduces coupling between adjancent cells, and for the reaction-diffusion equations, (egs ¥114). The results
therefore, fluctuations in individual cells are not independent. of numerical solutions were in quite good agreement in the left
The slower is diffusion, the coupling extends over smaller part of the system, but the excitationxat 4 did not survive.
distance, and domains of excitations can easier grow to These solutions are not shown in Figure 6. The deterministic
macroscopic size. In this way fluctuations generate spontaneousprediction is incorrect in this case because in a range of
impulses of excitation in the region ahead of the initial impulse. concentrations close to the stationary state the deterministic
After such impulse is created, it expands according to the wave dynamics is weak, and therefore fluctuations are relatively more
mechanism and can collapse with the original front. This is an important. We have obtained much better agreement between
essential difference in comparison with the system with the the stochastic evolution and numerical solutions of egqs14L
higher diffusion coefficient. Spontaneous creation of such if the distributions of all reagents &t= 600 are chosen as the
impulses is a purely stochastic effect, which is excluded in the initial condition. These results are shown in Figure 6. The
phenomenological description. Such effects are seen at a latelagreement in the left part of the system is very good, but the
period of the stochastic evolution. Local excitations are more most right excited domain obtained in ME simulations is slightly
probable close to the right boundary (see Figures 4 and 5), shifted to the left with respect to the deterministic profile. The
because the smoothing effect of diffusion is weaker at an later period of the stochastic evolution up to decaying of
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on in a region that is not reached by the first impulse. The
place of the first excitation returns to a neighborhood of the
stationary state earlier than regions that became excited later,
and therefore, it has a good chance to be excited again before
other places. In this way the next pair of running impulses could
be generated there, and this place becomes the leading center.
The same scenario occurs in the regions that were excited later.
All places in which excitations were generated appear to be in
an apparently oscillatory regime with a “period” of oscillations

of order of the “return time”, and all of them become sources
of impulses. Since the return time has some distribution, one
can expect that subsequent running impulses generated by each
source will not be equidistant, but this effect can be really small
" . /NN if the distribution is sharp.

0.0 e e T T e T T

0.0 10 20 30 40 50 V. Conclusions

] o X o Our results of ME simulations show that internal fluctuations
Figure 7. Continuation of the results presented in Figure 6. Snapshots -5 induce local excitations that strongly disturb the behavior

of the distributions ofV are shown at times (ips): t = 1100 (the ; ; : .
solid line), 1300 (the points), 1500 (the very short dashed line), 1700 predicted by phenomenological dynamics for spatially extended

(the short dashed line), 1900 (the dashed line), and 2400 (the long &XCitable systems. Fluctuations not only affect the velocity and

dashed line). The distribution at= 1100 was used as the initial ~Shape of the running impulses but they can also generate new
condition in numerical solutions of the reactiediffusion equations spontaneous excitations that interact with the earlier developed

(egs 11-14), which are shown as solid lines. impulse. In this way larger regions of the system become
excited than predicted by solutions of the coresponding reac-
excitation is shown in Figure 7. The very good agreement tion—diffusion equations.
between the results of ME simulations and deterministic  The comparison of the results of ME simulations performed
evolution is obtained if the distributions of all reagentstfer for homogeneous (ideally stirred) excitable systems, in which
1100 are taken as initial conditions for eqs—14. For only global fluctuation are possibléwith the results presented
sufficiently long time,t = 2400, the whole system becomes in this paper shows that local fluctuations have much stronger
uniform, which is consistent with the determinisctic result. If influence on the behavior of the spatially extended systems. The
the distributions of concentrations are sufficiently far from their spatially extended system is excited more easily than the well-
stationary values, then they are in strong vector direction field stirred system with a similar number of molecules. The reason
determined by the phenomenological equations and smallfor this is that in the extended system excitations can occupy
fluctuations do not influence significantly the dynamics of the initially only a small part of the system. Such localized
system. This is the reason why the deterministic description fluctuations are much more easily created than perturbation of
gives satisfactory approximation to the ME simulations in such the system as a whole, and they can survive if diffusion is
cases. The situation is completely different if the concentrations sufficiently slow. Therefore, the phenomenological description
distributions are close to the stationary state where the vectorthat does not include fluctuations seems to be much more
direction field is weak. In this case fluctuations become the satisfactory for the well-stirred systems than for the spatially
dominant factor that governs the dynamics of the system, andextended ones. On the other hand, if concentration distributions
the deterministic description fails. are locally sufficiently far from stationary values, then the
There is no direct relation between our model and realistic phenomenological description based on reactidiffusion
mechanisms of the BZ reaction and other excitable systems. equations is in reasonable agreement with the stochastic
Nevertheless, the results of our ME simulations can be helpful dynamics.
in explanation of the old but still not completely solved problem  As one can expect, an enlargement of the diffusion coefficient
of a character of sources of target patterns observed in#i& B increases the velocity and the width of the running impulse.
systen?” Two different concepts have been taken into account These properties have been observed in numerical solutions of
in phenomenological description of these patterns. Heteroge-the phenomenological equations as well as in our ME simula-
neous sources (pacemakers) are small regions with parametertions. Moreover, the higher diffusion coefficient makes the
different from those in the bulk?8-31 Such heterogeneities can appearance of excitations more difficult.
increase frequency of oscillations (in oscillatory regime) or they It is noteworthy that our chemical model is simple and
can induce localized Hopf bifurcation from excitable to oscil- realistic, and therefore, it indicates that it should be possible to
latory regime in excitable system. Homogeneous sourcesfind simple real systems, in which the influence of fluctuations
(leading centers) describe the same effects, but only localcan be tested experimentally. The crucial steps correspond
perturbations of reagents concentrations are allowed and thedirectly to the LangmuitHinshelwood (or the Michaelis
target patterns appear owing to intrinsic chemical dynafiics. Menten) kinetics to which an inhibition by excess of the reactant
The ME approach allows a stochastic description of the target is added. Such schemes have been used to describe kinetics of
patterns that appear in excitable systems. In order to simulatemany enzymatic reactions.
the target patterns, the size of the system must be much larger
than that considered here because it has to allow for generationK
of the tail of the impulse where the next spontaneous excitation
is possible. This condition means also much longer time of
simulations. Let us assume now that at some instant a first References and Notes
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